PowerPipe Exhaust for slant/6

Waves behave much differently than gas particles when a junction is encountered in the pipe. When two or more pipes come together, as in a collector for example, the waves travel into all of the available pipes - backwards as well as forwards. Waves are also reflected back up the original pipe, but with a negative pressure. The strength of the wave reflection is based on the area change compared to the area of the originating pipe.

This reflecting, negative pulse energy is the basis of wave action tuning. The basic idea is to time the negative wave pulse reflection to coincide with the period of overlap - this low pressure helps to pull in a fresh intake charge as the intake valve is opening and helps to remove the residual exhaust gases before the exhaust valve closes. Typically this phenomenon is controlled by the length of the primary header pipe. Due to the 'critical timing' aspect of this tuning technique, there may be parts of the power curve where more harm than good is done.

Gas speed is a double edged sword as well, too much gas speed indicates that that the system may be too restrictive hurting top end power, while too little gas speed tends to make the power curve excessively 'peaky' hurting low end torque. Larger diameter tubes allow the gases to expand; this cools the gases, slowing down both the gases and the waves.

Exhaust system design is a balancing act between all of these complex events and their timing. Even with the best compromise of exhaust pipe diameter and length, the collector outlet sizing can make or break the best design. The bottom line on any exhaust system design is to create the best, most useful power curve.

Your small pipes dump into a pipe that is extremely too big...You made no attempt to streamline these pipes to the larger pipe creating a lot of turbulence...I think you will find you have killed the low end power of a slant six but only track times will tell you....