Its not a 318. Pretty sure a stout street 383 wont disappoint you. [ame]http://youtu.be/I8XTNpxaats[/ame] They can even be used to move heavy 65 Belvederes, so a 3300lb A body shouldnt be too much for it!

Hey... he listed his reasons. I would too, but my first muscle car was a 68 383 roadrunner. I will always love that engine.

Horsepower is calculated from a measured torque reading...they are essentially the same. If you don't understand this relationship, do yourself a favor and read this: http://www.epi-eng.com/piston_engine_technology/power_and_torque.htm Below is cut/pasted from the essay: In order to discuss powerplants in any depth, it is essential to understand the concepts of POWER and TORQUE. HOWEVER, in order to understand POWER, you must first understand ENERGY and WORK. If you have not reviewed these concepts for a while, it would be helpful to do so before studying this article. CLICK HERE for a quick review of Energy and Work. It often seems that people are confused about the relationship between POWER and TORQUE. For example, we have heard engine builders, camshaft consultants, and other technical experts ask customers: "Do you want your engine to make HORSEPOWER or TORQUE?" And the question is usually asked in a tone which strongly suggests that these experts believe power and torque are somehow mutually exclusive. In fact, the opposite is true, and you should be clear on these facts: POWER (the rate of doing WORK) is dependent on TORQUE and RPM.TORQUE and RPM are the MEASURED quantities of engine output.POWER is CALCULATED from torque and RPM, by the following equation: HP = Torque x RPM ÷ 5252 (At the bottom of this page, the derivation of that equation is shown, for anyone interested.) An engine produces POWER by providing a ROTATING SHAFT which can exert a given amount of TORQUE on a load at a given RPM. The amount of TORQUE the engine can exert usually varies with RPM. TORQUE TORQUE is defined as a FORCE around a given point, applied at a RADIUS from that point. Note that the unit of TORQUE is one pound-foot (often misstated), while the unit of WORK is one foot-pound. Figure 1 Referring to Figure 1, assume that the handle is attached to the crank-arm so that it is parallel to the supported shaft and is located at a radius of 12" from the center of the shaft. In this example, consider the shaft to be fixed to the wall. Let the arrow represent a 100 lb. force, applied in a direction perpendicular to both the handle and the crank-arm, as shown. Because the shaft is fixed to the wall, the shaft does not turn, but there is a torque of 100 pounds-feet (100 pounds times 1 foot) applied to the shaft. Note that if the crank-arm in the sketch was twice as long (i.e. the handle was located 24" from the center of the shaft), the same 100 pound force applied to the handle would produce 200 lb-ft of torque (100 pounds times 2 feet). POWER POWER is the measure of how much WORK can be done in a specified TIME. In the example on the Work and Energy page, the guy pushing the car did 16,500 foot-pounds of WORK. If he did that work in two minutes, he would have produced 8250 foot-pounds per minute of POWER (165 feet x 100 pounds ÷ 2 minutes). If you are unclear about WORK and ENERGY, it would be a benefit to review those concepts HERE. In the same way that one ton is a large amount of weight (by definition, 2000 pounds), one horsepower is a large amount of power. The definition of one horsepower is 33,000 foot-pounds per minute. The power which the guy produced by pushing his car across the lot (8250 foot-pounds-per-minute) equals ¼ horsepower (8,250 ÷ 33,000). OK, all that’s fine, but how does pushing a car across a parking lot relate to rotating machinery? Consider the following change to the handle-and-crank-arm sketch above. The handle is still 12" from the center of the shaft, but now, instead of being fixed to the wall, the shaft now goes through the wall, supported by frictionless bearings, and is attached to a generator behind the wall. Suppose, as illustrated in Figure 2, that a constant force of 100 lbs. is somehow applied to the handle so that the force is always perpendicular to both the handle and the crank-arm as the crank turns. In other words, the "arrow" rotates with the handle and remains in the same position relative to the crank and handle, as shown in the sequence below. (That is called a "tangential force"). Figure 2 If that constant 100 lb. tangential force applied to the 12" handle (100 lb-ft of torque) causes the shaft to rotate at 2000 RPM, then the power the shaft is transmitting to the generator behind the wall is 38 HP, calculated as follows: 100 lb-ft of torque (100 lb. x 1 foot) times 2000 RPM divided by 5252 is 38 HP. The following examples illustrate several different values of TORQUE which produce 300 HP. Example 1: How much TORQUE is required to produce 300 HP at 2700 RPM? since HP = TORQUE x RPM ÷ 5252 then by rearranging the equation: TORQUE = HP x 5252 ÷ RPM Answer: TORQUE = 300 x 5252 ÷ 2700 = 584 lb-ft. Example 2: How much TORQUE is required to produce 300 HP at 4600 RPM? Answer: TORQUE = 300 x 5252 ÷ 4600 = 343 lb-ft. Example 3: How much TORQUE is required to produce 300 HP at 8000 RPM? Answer: TORQUE = 300 x 5252 ÷ 8000 = 197 lb-ft. Example 4: How much TORQUE does the 41,000 RPM turbine section of a 300 HP gas turbine engine produce? Answer: TORQUE = 300 x 5252 ÷ 41,000 = 38.4 lb-ft. Example 5: The output shaft of the gearbox of the engine in Example 4 above turns at 1591 RPM. How much TORQUE is available on that shaft? Answer: TORQUE = 300 x 5252 ÷ 1591 = 991 lb-ft. (ignoring losses in the gearbox, of course). The point to be taken from those numbers is that a given amount of horsepower can be made from an infinite number of combinations of torque and RPM. Think of it another way: In cars of equal weight, a 2-liter twin-cam engine that makes 300 HP at 8000 RPM (197 lb-ft) and 400 HP at 10,000 RPM (210 lb-ft) will get you out of a corner just as well as a 5-liter engine that makes 300 HP at 4000 RPM (394 lb-ft) and 400 HP at 5000 RPM (420 lb-ft). In fact, in cars of equal weight, the smaller engine will probably race BETTER because it's much lighter, therefore puts less weight on the front end. AND, in reality, the car with the lighter 2-liter engine will likely weigh less than the big V8-powered car, so will be a better race car for several reasons. Measuring Power A dynamometer determines the POWER an engine produces by applying a load to the engine output shaft by means of a water brake, a generator, an eddy-current absorber, or any other controllable device capable of absorbing power. The dynamometer control system causes the absorber to exactly match the amount of TORQUE the engine is producing at that instant, then measures that TORQUE and the RPM of the engine shaft, and from those two measurements, it calculates observed power. Then it applies various factors (air temperature, barometric pressure, relative humidity) in order to correct the observed power to the value it would have been if it had been measured at standard atmospheric conditions, called corrected power. Power to Drive a Pump In the course of working with lots of different engine projects, we often hear the suggestion that engine power can be increased by the use of a "better" oil pump. Implicit in that suggestion is the belief that a "better" oil pump has higher pumping efficiency, and can, therefore, deliver the required flow at the required pressure while consuming less power from the crankshaft to do so. While that is technically true, the magnitude of the improvement number is surprisingly small. How much power does it take to drive a pump delivering a known flow at a known pressure? We have already shown that power is work per unit time, and we will stick with good old American units for the time being (foot-pounds per minute and inch-pounds per minute). And we know that flow times pressure equals POWER, as shown by: Flow (cubic inches / minute) multiplied by pressure (pounds / square inch) = POWER (inch-pounds / minute) From there it is simply a matter of multiplying by the appropriate constants to produce an equation which calculates HP from pressure times flow. Since flow is more freqently given in gallons per minute, and since it is well known that there are 231 cubic inches in a gallon, then: Flow (GPM) x 231(cubic inches / gal) = Flow (cubic inches per minute). Since, as explained above, 1 HP is 33,000 foot-pounds of work per minute, multiplying that number by 12 produces the number of inch-pounds of work per minute in one HP (396,000). Dividing 396,000 by 231 gives the units-conversion factor of 1714.3. Therefore, the simple equation is: Pump HP = flow (GPM) x pressure (PSI) / 1714. That equation represents the power consumed by a pump having 100% efficiency. When the equation is modified to include pump efficiency, it becomes: Pump HP = (flow {GPM} x pressure {PSI} / (1714 x efficiency) Common gear-type pumps typically operate at between 75 and 80% efficiency. So suppose your all-aluminum V8 engine requires 10 GPM at 50 psi. The oil pump will have been sized to maintain some preferred level of oil pressure at idle when the engine and oil are hot, so the pump will have far more capacity than is required to maintain the 10 GPM at 50 psi at operating speed. (That's what the "relief" valve does: bypasses the excess flow capacity back to the inlet of the pump, which, as an added benefit, also dramatically reduces the prospect cavitation in the pump inlet line.) So suppose your 75%-efficient pump is maintaining 50 psi at operating speed, and is providing the 10 GPM needed by the engine. It is actually pumping roughly 50 GPM ( 10 of which goes through the engine, and the remaining 40 goes through the relief valve ) at 50 psi. The power to drive that pressure pump stage is: HP = ( 50 gpm x 50 psi ) / ( 1714 x 0.75 efficiency ) = 1.95 HP Suppose you succumb to the hype and shuck out some really big bucks for an allegedly 90% efficient pump. That pump (at the same flow and pressure) will consume: HP = ( 50 gpm x 50 psi ) / ( 1714 x 0.90 efficiency ) = 1.62 HP. WOW. A net gain of a full 1/3 of a HP. Can YOUR dyno even measure a 1-HP difference accurately and repeatably?

383??? i wouldn't select either myself,i'm small block all the way.But it has always been my understanding that a 440 will out perform a 383 in every way...maybe i'm wrong.

m maybe, but a 383 will out perform a smallblock any day all day. but that isn't what this thread is about.

Ive got a 360 also that pulls hard and revs hard, Im not going to build something that the 360 will kill

I've read and agree and understand all that, but hp and torque aren't essentially the same thing just like mpg and gallons aren't essentially the same thing. Knowing car A has used 30 gallons vs car B's 15 gallons is meaningless without knowing how many miles. Just like torque without knowing time (rpm). The only reason we can kind of compare engines by torque is cause we generally are talking about gas engines in the 300-500 cid range and know torque peaks are in the 2000-5000 rpm range and almost every time the rpm is stated with the torque numbers basically giving us the idea of the hp. Of course a 440 will make more hp at any given rpm, that's why we've stated 383 can make the same power but at a higher rpm, or think of it this way a 440 that makes peak hp at 5000 rpm (440×5000÷2=1.1 million cubic inches per minute) so (383×5744÷2=1.1 million cubic inches per minute) so a running 440 @ 5000 rpm is essentially the same size and potential as a 383 @ 5744 rpm.

383, everyone and their mothers have 440 when it comes to big blocks, be different and pick the 383. Be a leader not a follower.

Yep 383 makes more sense to me , to save my inner fenders, and the cost of custom fenderwells, light A body .love good revving motors

Long live the 383. Coincidentally, I just picked one up tonight for scrap money. He was gonna scrap it! Heavens to Mergatroid!

I picked up a 383 and 440 blocks, traded my buddy a 307 Chevy block!!! I'm planning on building the 383.

One of the mechanics at my transmission shop had it sitting for years at the shop. Complete from intake to oil pan. Finally stumbled into something good. Good luck with your 383 build.

if your going to build it from the ground up as a performance build do yourself a favor and buck up the money to get some compression in it. off the shelf pistons are usually in the 8.0-8.5 range with stock heads. my 383 runs hard but im at about 8.8:1 compression with speed pro pistons and 84cc heads. its been proven here that head flow trumps compression but it is easier to make an optimal combination with higher compression. id shoot for 9.5-10:1 with iron heads and 10-10.5: with alum heads. i have been very tempted to rip my 383 back down and have a set of 11:1 custom pistons made up and toss in a solid roller cam. then it would really be a terror.